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Activation energy can be estimated by a new simple method, in which logarithm of maxi- 
mum rate of conversion observed at different heating rates is plotted against reciprocal ab- 
solute temperature,  because the conversion at the maximum rate is approximately 
independent  of  the heating rate. The method is applied to thermal shrinkage of polycar- 
bonate,  and the estimated activation energy is in good agreement with those obtained by con- 
ventional methods. 

For estimating activation energy from thermoanalytical curves, numerous 
methods have been proposed. Most of them are based on particular kinetic 
equations, and their applicability is, therefore, limited, because they can not 
be applied to processes other than those following the particular kinetic 
equations. When the methods are applied to these processes, they tend to 
lead false and wrong kinetic parameters and mechanism. 

A few methods, such as proposed by Flynn and Wall [1], Friedman [2, 3] 
and one of the present authors [3-7], were derived from a general form of 
the kinetic equation and their applicability is not limited to particular 
kinetic models, but they have wide applicability to processes of single 
elementary process following Arrhenius type temperature dependence of ac- 
tivation energy. One example is application to physical processes, such as 
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thermal shrinkage [8]. However, there are two methods for estimating ac- 
tivation energy from derivative thermoanalytival curves, such as evolved gas 
analysis (EGA) curves [5-7, 9]. 

In one method, logarithm of the heating rate is plotted against recipro- 
cal absolute temperature at the maximum rate of conversion obtained at dif- 
ferent rates of linear heating, and the activation energy can be estimated 
from the slope of this linear plot. This method is based on a principle that 
the linear relation, which is obtained for linear heating thermal analysis 
results obtained at different heating rates, hold at a given conversion and 
the slope of the linear plot is proportional to the activation energy and inde- 
pendent from the other variables [1, 4, 6, 7], while the conversion at the max- 
imum rate of conversion is the same and independent on the heating rate 
[5-71. 

In the other method [5, 9], logarithm of the heating rate deivided by the 
square of the absolute temperature is plotted against the reciprocal absolute 
temperature, and the activation energy is similarly estimated. 

For estimating the activation energy, another linear relation can be 
derived for the results by linear heating thermal analysis by utilizing the 
above independence of the conversion at the maximum rate, and it is 
described in this paper. The proposed method has been applied to thermal 
shrinkage of a polycarbonate at different heating rates, and the activation 
energy estimated by the method is in good agreement with those obtained by 
conventional methods. These results are also reported in this paper. 

Theoretical consideration 

To begin with, two general equations are shown below, because these two 
are prerequisits for the new method [10]. 

c = F(x) (1) 

where C and x are conversion of the physical properties we observe in the 
thermal analysis and the conversion of the structural quantity which changes 
during heating, respectively, and F(x) means a general single-valued func- 
tion ofx. The second general equation is as follows; 

x = G(O) (2) 
and 0 is generalized time [10] and G(O) means a function of the generalized 
time. The generalized time is given below: 
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a E  (3) 
O= f exp (-'-R--f ) d t 

where AE, R, T and t are the activation energy, the gas constant, the ab- 
solute tempera ture  and the time, respectively. The second prerequisite, i.e., 
Eq. (2), holds for various processes, in which the rate constant follows 
Arrhenuis  law. 

One example is usual chemical reaction, in which single elementary reac- 
tion proceeds [4, 5]; 

dx  = A  exp( A E  (4) 
d t  - n---f ) g ( x )  

where A is the pre-exponential  factor, and g(x) means another single-valued 
function of x, such as (1-x)n. 

Another  example is diffusion in which the diffusion constant follows Ar- 
rhenius law [5]; 

B r  A b 7  (5) 
= Do exp ( - ~ T T )  Vz x 

where Do exp (-AE/RT) andx are the diffusion constant and the concentra- 

tion of diffusing species, respectively, and V 2 is a Laplacian operator.  
The growth from pre-existing nuclei is also the case [7]; 

- I n  ( l - x )  = Z 0  m (6) 

where Z exp ( -  AE/RT) is the growth rate and m is the growth dimension. 
At the maximum rate of conversion the next equation holds; 

(7) 
d t  z - 0 

Substituting Eqs (1), (2) and (3) into Eq. (7) and taking accounts of heating 
at a constant rate (this is the third prerequisite) we obtain [5-7] 

0 d z C ( e )  + d C ( O )  = 0  (8) 
d 0  z dO 

where an approximation,  i.e., exp (-AE/RT) dt = R7 g exp (-AE/RT)/E 2 ~o is 
applied for the heating rate of ~o [11]. In Eq. (8) the heating rate is not in- 
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cluded, and C(O) and 0 are only the variable involved. Therefore,  at the max- 
imum rate of conversion, the generalized time, 0, is the same and inde- 
pendent  from the heating rate. Thus C and x become also the same, because 
of the Eqs (1) and (2). 

Therefore dx/d is proportional to the rate constant at the maximum rate 
of conversion [2, 3]. Because 

dC dC dr (9) 
dt d x d t  

and dC/dx is a constant at the same conversion, x, dC/dt is proportional to 
the rate constant. Thus, when logarithm of dC/dt (not dC/dT ), i.e., the 
height of the peak from the base line in the derivative thermoanalytical 
curve, is plotted against the reciprocal absolute temperature at the peak, the 
linear plot can be obtained and this is an Arrhenius plot and also an exten- 
sion of Friedman plot [2, 3], if the above three requisites hold in the process 
we observe. 

By using the peak in derivative thermoanalytieal curves, we have three 
different methods for estimating the activation energy, and all are very 
simple [5-7]. Agreement  among the activation energies estimated by at least 
two of these three methods should be observed for verification of soundness 
of the estimation or applicability of the methods, and also verification of the 
above three prerequisites. Further kinetic: analysis to elucidate the 
mechanism and to estimate the pre-exponential factor can be made by a few 
methods proposed previously [4-7, 10], and a simple way is to make the 
derivative master curve by using the following relation. 

dC d C d t  dC / A E \  
dO = dt =- -exp t, 

(lo) 

Relation between dC/d~o calculated by the above equation and ~o is the 
derivative master curve, and the master curves derived by using the results 
obtained at different heating rates can be superposed on each other. This is 
also the validation, and because it is similar to isothermal relation between 
dC/dt and t, the master curve can be analyzed in conventional way. The 
other simple way is to plot dC/d~o against the reciprocal absolute tempera- 
ture. The plots can be superposed with each other, because logarithm of ~o is 
proportional the reciprocal absolute temperature [12]. This superposition is 
also a validation. 
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The method proposed in this short paper has been applied to thermal 
shrinkage of polycarbonate films observed at a few different heating rates, 
and the results are described below. 

Experimental 

Panlite polycarbonate was supplied in the form of thin film fromTeijin 
Kasei Co., Ltd.; it contains no additives detectable by IR-spectroscopy. X- 
ray diffraction measurements of the as-received film samples revealed that 
the polymer was completely amorphous. The weight averaged molecular 
weight of the polymer was 4.6 x 104 , estimated from viscosity measure- 
ments in tetrahydrofuran solutions. Samples were cold-drawn with a tensile 
machine at room temperature and under a strain rate of 0.02 rain -1. This 
polycarbonate begins to show necking near 7% strain, and the strain reaches 
about 80%, when the necking part extends to the whole sample under these 
drawing conditions. But almost all of strain seems to be recovered by ther- 
mal treatment up to above the glass transition temperature. 
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Fig. 1 (a) Heating rate-dependence of  thermal shrinkage curves 

Thermal shrinkage of cold-drawn samples were measured with a ther- 
momechanical analyzer designed and constructed in the laboratory of one of 
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Fig. I (b) Heating rate-dependence of derivative curves of 80% cold-drawn polyearbonate films 

the authors (TK) [13]. The instrument was equipped with a programmed 
temperature controller so that the sample temperature could be varied 
linearly with time at several heating rates. The sample dimensions were 10 
mm length, 5 mm width and about 100/~m thick. As the samples were very 
thin, it was not necessary to consider the time lag of sample temperature to 
the recorded temperature, which was detected with a thin Alumel-Chromel 
thermocouple situated just beside the sample. A very small external stress 
of 1 xl05 Pa was usually applied during measurements to keep the sample 
tight. A signal differentiator for the output of a linear variable differential 
transformer was also equipped. Thus, the sample temperature, the thermal 
shrinkage and the rate of shrinkage were recorded simultaneously with a 
multichannel recorder. 

Results and discussion 

Figure 1 shows the heating rate-dependence of the thermal shrinkage 
curves (a) and that of the time derivative curves (b) around the glass transi- 
tion of 80% cold-drawn polycarbonate samples. Figure 2 shows the relation 
of the reciprocal peak temperatures of the derivative curves against the 
logarithmic heating rate (a) and that against the logarithmic peak heights of 

J. Thermal Anal., 37, 1991 



OZAWA, KATO: A SIMPLE ME'IYIOD 1305 

the derivative curves (b). Both plots gave straight lines and the apparent ac- 
tivation energies of the molecular process accompanied with the thermal 
shrinkage around Tg of this polymer were estimated as 520 kJ/mol from the 
slope of the straight line (a) and as 500 kJ/mol from that of the straight line 
(b). These values correspond well to the reported one of this polymer, 480 • 
20 kJ/mol by Krum and Muller [13] and 430-460 kJ/mol by Matz et al.[15, 
16]. 
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Fig. 2 Plot of the reciprocal maximum temperature of derivative curves against the logarithmic 
heating rate (a) and that against the peak height of the derivative curves of thermal 
shrinkage of 80% cold-drawn polycarbonate films 

It is important to point out here that the two apparent activation energies 
estimated from the Arrhenius plot and the plot previously proposed by one 
of the authors (TO) in Fig. 2 were almost the same. This means that the 
molecular process accompanied with the thermal shrinkage of cold-drawn 
polycarbonate obeys a kinetics of a rate process as the case reported by Bar- 
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ton on the glass transition of poly(5-ethylresorcinol isophthalate) [17], and 
the three requisites described in the preceding section are valid. 

Before concluding this short communication, we should point out two 
points. In derivation of the present method, we use the maximum of dC/dt, 
which is not necessarily the same with the peak in derivative type ther- 
moanalytical curves. For example, the rate of conversion does not reach at 
its maximum at the peak of differential thermal analysis (DTA) and differen- 
tial scanning calorimetry (DSC) curves because of thermal lag [17-19], ex- 
cept for DTA and DSC of high thermal response, in which the peak is 
roughly in coincidence with the maximum rate of conversion. For EGA and 
evolved gas detection (EGD), the peak of the curves agrees with the maxi- 
mum rate of conversion, provided that the evacuation is sufficient; otherwise 
the curve spreads out and becomes diffuse due to accumulation of evolved 
gas. Therefore the agreement between the peak and the maximum rate of 
conversion should be taken into accounts in both methods. 

Thus, for estimating the activation energy from the maximum rate of con- 
version, we have, so far, three methods of wide applicability, which do not 
need any assumption of the reaction mechanism. One is to use the linear 
relation between the logarithm of heating rate and the reciprocal absolute 
temperature [5]. The second is based on the linear relation between the 
logarithm of ~,/Tm 2 and the reciprocal absolute temperature. Kissinger first 
postulated that this relation holds rigorously for the first order reactions 
and approximately for n-th order reactions [9]. Afterward general ap- 
plicability of this relation was set forth by the present author [5]. The third 
relation dealt with in this paper was found to be valid for the first order 
reaction by Chen and Winer [21]. However this relation has general ap- 
plicability, as proved in this paper. 

These three methods are all derived from the fact that the generalized 
time at the maximum rate of conversion is independent on the heating rate 
as expressed in the Eq. (8). For deriving this equation an approximation is 
used as mentioned above, but any other approximation does not need for the 
third method, while the other two are derived by using approximation fur- 
thermore for the integration in the generalized time. The approximation 
used in the first method is more precise than that in the second method [10], 
though the second one is the most complicated among the three. 
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Zusammenfassung  - -  Die Seh~itzung der Aktivierungsenergie kann mittels einer neuen 
Methode erfolgen, bei welcher der Logarithmus der  ffir verschiedene Aufheizgesehwindig- 
keiten gemessenen maximalen Konversionsgeschwindigkeit als Funktion der reziproken 
Tempera tur  aufgetragen wird, da die Konversion bei der maximalen Geschwindigkeit inetwa 
unabh~ingig yon der Aufheizgeschwindigkeit ist. Das Verfahren wurde beim thermischen 
Schrumpfen yon Polyearbonat angewendet und die geschfitzte Aktivierungsenergie liegt in 
guter Ubereinst immung mit den in herk6mmlichen Verfahren ermittelten Werten. 
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